Contenido

Con	ntenido	I	
Índi	dice de tablas		
Índi	dice de figuras	IV	
1.	Introducción	1	
2.	El sistema hidrológico		
3.	Descarga del Programa QGIS		
4.	Descarga del MDT	5	
5.	Empezando con QGIS	7	
	5.1. Combinar las capas necesarias para cubrir la zona de interés	9	
	5.2. Sistemas de referencia	10	
6.	Obtención de las características hidrológicas de la cuenca	12	
7.	Obtención de los cauces de la cuenca	15	
8.	Descarga de HEC-HMS	17	
9.	Características generales del modelo HEC-HMS	18	
10.	. Trazado manual de la cuenca vertiente	20	
11.	. Resolviendo casos sencillos con HEC-HMS	21	
	11.1. Cálculo del impacto de una urbanización en parte de una cuenca	21	
	Circulación de una avenida por un cauce	23	
12.	. Generación de cuencas en HEC-HMS	25	
13.	. Preparación de datos climáticos	31	
	13.1. Obtención de datos del SAR de la Junta de Andalucía		
	13.2. Obtención de los datos característicos para el modelo hidrológico		
	13.3. Completado de la serie de datos		
	13.4. Obtención de las precipitaciones máximas de cada año		
14.	. Determinación de las características probabilísticas de la precipitación		
	14.1. Distribuciones de valor extremo		
15.	. Caso 1: Evaluación de la avenida máxima		
	15.1. Precipitaciones máximas para cierto periodo de retorno		
	15.2. Creación de un modelo meteorológico en HEC HMS		
	15.3. Especificación de los datos de la cuenca para el análisis de seguridad	d 44	
	15.4. Incorporación de datos a shp a partir de mapas ráster		
	15.5. Recortar capas vectoriales		
	15.6. Conversión de lluvia a escorrentía		
	15.7. Ejecución del caso		

16.	Caso 2 Evaluación de recursos	52
	16.1. Creación de un modelo meteorológico para evaluación de recursos	52
	16.2. Completado de datos de suelo para el SMA	53
	16.3. Intervención del dosel y cubierta del suelo	. 54
	16.4. Datos del almacenamiento del suelo	. 58
	16.5. Conversión de la lluvia en escorrentía	64
	16.6. Flujo de base	65
	16.7. Secciones de paso de los cauces	66
	16.8. Circulación de la avenida.	68
	16.9. Ejecución de la simulación	70
	16.10. Resultados disponibles	71
	16.11. Balance de la cuenca y recursos disponibles	74
Refe	erencias	79
Anexo I datos de la Cuenca		81
	Vegetación	81
	Almacenamiento en suelo	81
	Infiltración	82
	Generación de escorrentía	82
	Flujo de base	83
	Circulación por cauces	83
	Infiltración en cauces	83
Anexo II Creación de un embalse8		
	Evaluación del vaso	84

Índice de tablas

Tabla 1	Datos medios anuales para cada año hidrológico completo	.35
Tabla 2	Años ordenados de menor a mayor precipitación para obtención	
	del año mediana	.37
Tabla 3	Precipitaciones máximas diarias para la estación de Níjar	.42
Tabla 4	Valores máximos ordenados, probabilidad de ocurrencia (p)	
	y variable reducida (y)	.42
Tabla 5	Precipitaciones asociadas a cada periodo de retorno	.42
Tabla 6	Intensidades máximas para diferentes duraciones y periodos de retorno	
	en Níjar	.43
Tabla 7	Cantidades de precipitación máximas (P) para diferentes duraciones (t)	
	y periodos de retorno (T) en Níjar	.43
Tabla 8	Almacenamiento en dosel y en superficie del suelo en cada tipo de cubierta	. 55
Tabla 9	Resumen de los valores hidrológicos de los diferentes suelos. Horizonte A	. 59
Tabla 10	Resumen de los valores hidrológicos de los diferentes suelos. Horizonte C	.60
Tabla 11	Recarga superficial anual de la cuenca Rambla Morales (Almería)	.76
Tabla 12	Recarga anual desde los cauces en la cuenca Rambla Morales (Almería)	.77
Tabla 13	Balance medio de la cuenca (Hm ³)	.77
Tabla 14	Tabla de elevaciones, superficie y volumen	.86

Índice de figuras

Figura 1	Búsqueda e instalación de QGIS	4
Figura 2	Imagen de la página de descargas del portal de información Ambiental	
-	de la Junta de Andalucía	5
Figura 3	Imagen de las carpetas con información topográfica	6
Figura 4	Carpetas de descarga de información topográfica	6
Figura 5	Selección de la descarga deseada	6
Figura 6	Imagen inicial de QGIS	7
Figura 7	Icono del Administrador de fuentes de datos	7
Figura 8	Pantalla de entrada al administrador de fuentes de datos	8
Figura 9	Selección de mapas ráster con MDT	8
Figura 10	Aspecto de las capas importadas	8
Figura 11	Aspecto de la cascada de ventanas de la herramienta Combinar	9
Figura 12	Herramienta combinar ráster	9
Figura 13	Selección de capas para combinar	9
Figura 14	Proceso de la herramienta combinar	10
Figura 15	Capa ráster conteniendo un único archivo que combina todas las capas	
5	individuales	
Figura 16	Ejecución de la herramienta r.watershed	
Figura 17	Aspecto de algunas capas generadas por la herramienta r.watershed	
Figura 18	Aspecto de la herramienta r.water.outlet	
Figura 19	Perímetro de la cuenca generado por el comando r.water.outlet	
Figura 20	Herramienta r.stream.extract	
Figura 21	Capa vectorial resultado de la herramienta r.strem.extract	
Figura 22	Capa shp resultado de eliminar los cauces que no interesa analizar	
Figura 23	Aspecto de la pantalla inicial del Modelo HEC-HMS	
Figura 24	Trazado manual de las cuencas vertientes	
Figura 25	Crear una cuenca	
Figura 26	Procesos y datos de la subcuenca	21
Figura 27	Modelo meteorológico v sus opciones	
Figura 28	Datos de Iluvia	
Figura 29	Especificaciones de control	
Figura 30	Resumen de resultados para la subcuenca 1	
Figura 31	Configuración del problema una vez incluida la alteración	
Figura 32	Datos para el caso de circulación mediante el método de Muskingum	24
Figura 33	Hidrogramas entrante y saliente	
Figura 34	Creación de un nuevo proyecto en HEC-HMS 4-10	
Figura 35	creación de una cuenca	
Figura 36	Inserción de un modelo del terreno	
Figura 37	Selección de un MDT	
Figura 38	Selección del MDT en la cuenca Basin1	
Figura 39	Advertencia sobre el sistema de referencia	
Figura 40	Imagen del modelo de elevaciones una vez incorporado	
Figura 41	Construir paredes en el MDT	
Figura 42	Posicionado de los cauces con mediante un archivo externo.	
Figura 43	Advertencia sobre fill sinks	
Figura 44	Resultado mostrando las posibles hondonadas.	
Figura 45	Advertencia sobre Preprocessing Drainage	
<u> </u>	1 J J	

Figura 46	Menú de preprocesos	28
Figura 47	Área vertiente mínima para definir un cauce	29
Figura 48	Selección del punto final de la cuenca	29
Figura 49	Indicar letras para nombrar los elementos de la cuenca	30
Figura 50	Vista de los elementos encontrados por el Modelo	30
Figura 51	Exportación del mapa de subcuencas para su posterior proceso en QGIS	30
Figura 52	Pantalla de entrada a las estaciones agroclimáticas del SAR	31
Figura 53	Selección de una estación agroclimática	32
Figura 54	Datos generales de la estación	32
Figura 55	Datos disponibles y selección de la descarga	33
Figura 56	Aspecto general de los datos descargados	33
Figura 57	Cambiar puntos por comas para adecuar el sistema de decimales	34
Figura 58	Determinación del año, mes y día a partir de la fecha	34
Figura 59	Uso de la función promedio.si	34
Figura 60	Valores medios anuales para cada variable en función del año hidrológico	36
Figura 61	Evolución de la temperatura máxima diaria en un año cualquiera	
	y en el año promedio	36
Figura 62	Aspecto de la tabla de precipitaciones diarias clasificadas	
	por años hidrológicos	38
Figura 63	Serie anual de precipitaciones máximo diarias	39
Figura 64	Creación de un modelo meteorológico de precipitación extrema en HEC-HMS	43
Figura 65	Selección de las características del modelo	44
Figura 66	Creación de una copia de la cuenca	44
Figura 67	Menú para incorporar características de las subcuencas y cauces	45
Figura 68	Características de las subcuencas	45
Figura 69	Características de los cauces	45
Figura 70	Mapa ráster del número de curva	46
Figura 71	Valores de CN para cada subcuenca	47
Figura 72	Guardar la tabla de atributos como hoja excel	47
Figura 73	Inserción de los datos en el modelo HEC-HMS	47
Figura 74	Opciones de rásterización y porcentaje de zona impermeable	48
Figura 75	Tiempos de retraso calculados mediante la ecuación de Manning	49
Figura 76	Especificaciones de control para el caso de seguridad en la cuenca	50
Figura 77	Generación del ejecutable (Simulation Run)	50
Figura 78	Resumen de resultados de la cuenca	50
Figura 79	Ejemplo de salida gráfica para una de las subcuencas estudiadas	51
Figura 80	Aspecto de la pantalla de selección de lluvia y evapotranspiración	52
Figura 81	Datos de precipitación para el modelo meteorológico	53
Figura 82	Esquema de circulación del modelo SMA	53
Figura 83	Selección de las características del dosel	54
Figura 84	Mapa de cubiertas simplificado	54
Figura 85	Creación de nuevos campos para calcular la interceptación	
	y el almacenamiento superficial del suelo	55
Figura 86	Calculadora de campos y selección de una función condicional	55
Figura 87	Calculadora de campos. Selección de los campos que se analizan	56
Figura 88	Calculadora de campos. Función para calcular el almacenamiento máximo	56
Figura 89	Almacenamiento máximo en dosel	57
Figura 90	Almacenamiento superficial del suelo	57
Figura 91	Evolución del coeficiente de cultivo (kc) natural para matorral	57

Figura 92	Evolución del coeficiente de cultivo (kc) a lo largo del tiempo de cálculo	.58
Figura 93	Asignación de la serie del coeficiente de cultivo (kc) a cada subcuenca	.58
Figura 94	Pantalla para completar los datos del suelo en el modelo SMA	.58
Figura 95	Suelos de la zona de estudio	.59
Figura 96	Unión de tablas a una capa shp	.60
Figura 97	Resultado de la unión de una tabla de atributos y una hoja Excel	.61
Figura 98	Almacenamiento máximo (mm) para la zona de estudio	.61
Figura 99	Proceso de incorporación de datos a la tabla de datos de HEC-HMS	.61
Figura 100	Aspecto de la tabla de datos completada	.61
Figura 101	Mapas ráster de las propiedades del suelo y subsuelo	.62
Figura 102	Mapa litológico de la zona	.62
Figura 103	Permeabilidad de los materiales geológicos	
	(Fuente: Freeze, R.A. and Cherry, J.A. , 1979)	.63
Figura 104	Porosidad de varios materiales geológicos.	
	(Fuente: Domenico,& Schwartz. 1997)	.63
Figura 105	Permeabilidad y almacenamiento en la capa subsuperficial 2	.63
Figura 106	Completado manual de la tabla de atributos del shp de litología	.64
Figura 107	Aspecto de la pantalla de datos para el hidrograma de Clark	.64
Figura 108	Parámetros para el Hidrograma de Clark en nuestra cuenca	.65
Figura 109	Aspecto de los datos de flujo de base calculados	.65
Figura 110	Instalación de Profile Tool	.66
Figura 111	Aspecto de la pantalla de Profile Tool	.66
Figura 112	Sección seleccionada en QGIS	.67
Figura 113	Sección que se muestra en la herramienta QGIS	.67
Figura 114	Creación de una serie de datos pareados tipo Cross Section	.67
Figura 115	Aspecto de la tabla de una sección de paso con 8 puntos	.68
Figura 116	Secciones de paso creadas en este ejemplo	.68
Figura 117	Datos necesarios para circular la avenida por el método de Muskingum-Cunge	69
Figura 118	Aspecto de la pantalla de infiltración en cauces	.69
Figura 119	Especificaciones de control para un año hidrológico	.70
Figura 120	Selección de las componentes de un ejecutable	.70
Figura 121	Proceso de ejecución de la simulación	.71
Figura 122	Resumen de resultados para cada elemento.	.71
Figura 123	Grafico de lluvia-escorrentía de una subcuenca	.72
Figura 124	Resultados disponibles para cada subcuenca	.72
Figura 125	Resumen gráfico de una subcuenca	.73
Figura 126	Aspecto de la tabla resumen de resultados para una subcuenca.	.73
Figura 127	Ejemplo de salidas gráficas proporcionadas por el modelo: Outflow, canopy	
-	overflow, canopy ET, soil infiltración, Almacenamiento del suelo, percolación,	
	Escorrentía directa, flujo de base, recarga del acuífero.	.73
Figura 128	Ejemplo de tabla de datos para el resultado recarga de acuífero	.74
Figura 129	Opciones de control para cada año hidrológico	.74
Figura 130	Especificaciones de control para la serie completa	.75
Figura 131	Variación del almacenamiento de agua en el suelo a lo largo de la serie	
	para la subcuenca sb4	.75
Figura 132	Aspecto de la salida gráfica de un embalse	.75
Figura 133	Evolución de la recarga al acuífero desde la subcuenca sb4	.76
Figura 134	Recarga superficial anual de la cuenca Rambla Morales (Almería)	.76
Figura 135	Recarga anual desde los cauces en la cuenca Rambla Morales (Almería)	.77

Figura 136	MDT recortado en el entorno de la zona húmeda	.84
Figura 137	Curvas de nivel generadas en el entorno de la zona inundable	.84
Figura 138	Polígono delimitando la zona inundable	.85
Figura 139	Aspecto de la pantalla donde se encuentra el paso de líneas a polígonos	.85
Figura 140	Aspecto de la calculadora de campos para añadir la superficie de cada recinto	.86
Figura 141	Colocación del embalse en su lugar	. 87
Figura 142	Opciones de salida de agua por un embalse	. 87
Figura 143	Datos para rellenar los diferentes tipos de salida de agua por un embalse	. 87
Figura 144	Aspecto de la pantalla de salida de un embalse	. 88